Autism related studies

Autism related studies
Fever plus mitochondrial disease could be risk factors for autistic regression.

Autistic spectrum disorders encompass etiologically heterogeneous persons, with many genetic causes. A subgroup of these individuals has mitochondrial disease. Because a variety of metabolic disorders, including mitochondrial disease show regression with fever, a retrospective chart review was performed and identified 28 patients who met diagnostic criteria for autistic spectrum disorders and mitochondrial disease. Autistic regression occurred in 60.7% (17 of 28), a statistically significant increase over the general autistic spectrum disorder population (P < .0001). Of the 17 individuals with autistic regression, 70.6% (12 of 17) regressed with fever and 29.4% (5 of 17) regressed without identifiable linkage to fever or vaccinations. None showed regression with vaccination unless a febrile response was present. Although the study is small, a subgroup of patients with mitochondrial disease may be at risk of autistic regression with fever. Although recommended vaccinations schedules are appropriate in mitochondrial disease, fever management appears important for decreasing regression risk.

Is fever a predictive factor in the autism spectrum disorders?

If it is confirmed that autistic children with high fevers are of higher functionality, it is possible for preventive intervention programs to be developed where children are exposed to the least possible chemical drugs intervention (antipyretics, antibiotics, etc.) or even selective vaccination. Further experimental, epidemiological and clinical studies are necessary to investigate the above.

Prevalence of autism spectrum disorders–Autism and Developmental Disabilities Monitoring Network, 14 sites, United States, 2008.

For 2008, the overall estimated prevalence of ASDs among the 14 ADDM sites was 11.3 per 1,000 (one in 88) children aged 8 years who were living in these communities during 2008. Overall ASD prevalence estimates varied widely across all sites (range: 4.8-21.2 per 1,000 children aged 8 years). ASD prevalence estimates also varied widely by sex and by racial/ethnic group. Approximately one in 54 boys and one in 252 girls living in the ADDM Network communities were identified as having ASDs. Comparison of 2008 findings with those for earlier surveillance years indicated an increase in estimated ASD prevalence of 23% when the 2008 data were compared with the data for 2006 (from 9.0 per 1,000 children aged 8 years in 2006 to 11.0 in 2008 for the 11 sites that provided data for both surveillance years) and an estimated increase of 78% when the 2008 data were compared with the data for 2002 (from 6.4 per 1,000 children aged 8 years in 2002 to 11.4 in 2008 for the 13 sites that provided data for both surveillance years). Because the ADDM Network sites do not make up a nationally representative sample, these combined prevalence estimates should not be generalized to the United States as a whole.

Bactericidal Antibiotics Induce Mitochondrial Dysfunction and Oxidative Damage in Mammalian Cells

Prolonged antibiotic treatment can lead to detrimental side effects in patients, including ototoxicity, nephrotoxicity, and tendinopathy, yet the mechanisms underlying the effects of antibiotics in mammalian systems remain unclear. It has been suggested that bactericidal antibiotics induce the formation of toxic reactive oxygen species (ROS) in bacteria. We show that clinically relevant doses of bactericidal antibiotics—quinolones, aminoglycosides, and β-lactams—cause mitochondrial dysfunction and ROS overproduction in mammalian cells. We demonstrate that these bactericidal antibiotic–induced effects lead to oxidative damage to DNA, proteins, and membrane lipids. Mice treated with bactericidal antibiotics exhibited elevated oxidative stress markers in the blood, oxidative tissue damage, and up-regulated expression of key genes involved in antioxidant defense mechanisms, which points to the potential physiological relevance of these antibiotic effects. The deleterious effects of bactericidal antibiotics were alleviated in cell culture and in mice by the administration of the antioxidant N-acetyl-L-cysteine or prevented by preferential use of bacteriostatic antibiotics. This work highlights the role of antibiotics in the production of oxidative tissue damage in mammalian cells and presents strategies to mitigate or prevent the resulting damage, with the goal of improving the safety of antibiotic treatment in people.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s