The researchers note that their cross-reactivity findings in mice are consistent with work conducted by Kanduc in humans, who identified considerable amino acid sequence similarity between the Gardasil vaccine antigen and a number of human proteins

Study:

The researchers note that their cross-reactivity findings in mice are consistent with work conducted by Kanduc in humans, who identified considerable amino acid sequence similarity between the Gardasil vaccine antigen and a number of human proteins. According to Kanduc, “the number of viral matches and their locations make the occurrence of side autoimmune cross-reactions in the human host following HPV16-based vaccination almost unavoidable.”
The mouse study findings also corroborate and amplify a prior case study report by Tomljenovic and Shaw describing immunohistochemical analysis of brain tissue specimens from two young women who died after receiving the Gardasil vaccine. Immunohistochemistry is a method for demonstrating the presence and location of antigens in tissue using antibodies that recognize the target antigen. In both cases, the standard autopsies had previously failed to ascertain an exact cause of death. Case 1 experienced progressively worsening neurological symptoms following her first Gardasil injection and died in her sleep six months after her third Gardasil booster. She showed no notable neuroinflammatory changes upon autopsy using an unspecified histological protocol. Case 2 developed a variety of symptoms after her first injection and died two weeks after the second booster. The autopsy report for Case 2 found cerebral changes consistent with encephalopathy and indicative of a “focally disrupted blood-brain barrier.”
The World Health Organization’s Global Advisory Committee on Vaccine Safety (GACVS) critiqued the Tomljenovic and Shaw case study but did so on the basis of several extremely careless and factually incorrect statements, as rebutted by leading scientist Sin Hang Lee of Milford Molecular Diagnostics. One of the objections of the GACVS was that there was “no evidence of inflammation on autopsy”—despite the fact that the autopsy for Case 2 found evidence of encephalopathy. In addition, Tomljenovic and Shaw point out that their fine-tuned analyses of brain tissue from the two deceased young women, unlike the autopsies, used microglia- and astroglia-specific markers that were able to identify “exceptionally intense micro- and astrogliosis in all brain tissue sections examined” from both cases. Microgliosis represents “an intense reaction… to pathogenic insults” and astrogliosis similarly occurs when the “astrocytic defense mechanisms [are] overwhelmed in pathological conditions.” This type of glial activation can produce “irreversible neurodestructive and pro-inflammatory processes in the brain,” according to Tomljenovic and Shaw.
With its triple findings from behavioral tests and serum and brain tissue analyses, the mouse study validates the case study report, which concludes that Gardasil (and Cervarix) are “inherently unsafe” for at least some individuals. Although it is clear that much more needs to be done to tease out the specific mechanisms whereby HPV (and other) vaccines and aluminum adjuvants can trigger autoimmune disease, the combined results of the carefully conducted mouse and human Gardasil studies cannot be easily dismissed. Together, the two studies’ results indicate that there is good reason to be cautious about aluminum-containing HPV vaccines—particularly now that the reformulated Gardasil-9 vaccine contains more than twice the amount of aluminum as its quadrivalent predecessor. The next time vaccine experts loudly proclaim that vaccine safety is unassailable, consider whether the researchers exhibited any genuine curiosity about adverse events to begin with. It’s not possible to find what you don’t look for.