US Patent 5003186 A – Stratospheric Welsbach seeding for reduction of global warming
BACKGROUND OF THE INVENTION
This invention relates to a method for the reduction of global warming resulting from the greenhouse effect, and in particular to a method which involves the seeding of the earth’s stratosphere with Welsbach-like materials.
Global warming has been a great concern of many environmental scientists. Scientists believe that the greenhouse effect is responsible for global warming. Greatly increased amounts of heat-trapping gases have been generated since the Industrial Revolution. These gases, such as CO2, CFC, and methane, accumulate in the atmosphere and allow sunlight to stream in freely but block heat from escaping (greenhouse effect). These gases are relatively transparent to sunshine but absorb strongly the long-wavelength infrared radiation released by the earth.
Most current approaches to reduce global warming are to restrict the release of various greenhouse gases, such as CO2, CFC, and methane. These imply the need to establish new regulations and the need to monitor various gases and to enforce the regulations.
One proposed solution to the problem of global warming involves the seeding of the atmosphere with metallic particles. One technique proposed to seed the metallic particles was to add the tiny particles to the fuel of jet airliners, so that the particles would be emitted from the jet engine exhaust while the airliner was at its cruising altitude. While this method would increase the reflection of visible light incident from space, the metallic particles would trap the long wavelength blackbody radiation released from the earth. This could result in net increase in global warming.
It is therefore an object of the present invention to provide a method for reduction of global warming due to the greenhouse effect which permits heat to escape through the atmosphere.
SUMMARY OF THE INVENTION
A method is disclosed for reducing atmospheric warming due to the greenhouse effect resulting from a greenhouse gases layer. The method comprises the step of seeding the greenhouse gas layer with a quantity of tiny particles of materials characterized by wavelength-dependent emissivity or reflectivity, in that said materials have high emissivities in the visible and far infrared wavelength regions and low emissivity in the near infrared wavelength region. Such materials can include the class of materials known as Welsbach materials. The oxides of metal, e.g., aluminum oxide, are also suitable for the purpose. The greenhouse gases layer typically extends between about seven and thirteen kilometers above the earth’s surface. The seeding of the stratosphere occurs within this layer. The particles suspended in the stratosphere as a result of the seeding provide a mechanism for converting the blackbody radiation emitted by the earth at near infrared wavelengths into radiation in the visible and far infrared wavelength so that this heat energy may be reradiated out into space, thereby reducing the global warming due to the greenhouse effect.